Volume no :
|
Issue no :
Article Type :
Author :
Sidharth Sharma
Published Date :
Publisher :
Page No: 1 - 6
Abstract : Ransomware remains one of the most significant cybersecurity threats, evolving rapidly with new attack vectors, encryption techniques, and extortion models. As we enter 2025, ransomware attacks have become more sophisticated, leveraging artificial intelligence (AI), automation, and emerging technologies to bypass traditional security measures. This paper analyzes the latest ransomware trends, including targeted attacks on critical infrastructure, Ransomware-as-a-Service (RaaS), and double/triple extortion tactics. Additionally, it explores advanced mitigation techniques such as AI-driven anomaly detection, zero-trust architectures, blockchain-based security solutions, and proactive threat intelligence frameworks. By examining real-world case studies and industry best practices, this study provides insights into effective countermeasures and future directions for securing digital ecosystems against ransomware threats. The findings aim to assist cybersecurity professionals, policymakers, and organizations in strengthening their defense mechanisms against evolving ransomware threats in 2025 and beyond.
Keyword Ransomware, cybersecurity, threat mitigation, AI-driven security, zero-trust architecture, Ransomware-as-a-Service (RaaS), threat intelligence.
Reference:
  1. Jasper Gnana Chandran, J., Karthick, R., Rajagopal, R., & Meenalochini, P. (2023). Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image. International Journal of Pattern Recognition and Artificial Intelligence37(02), 2354001.
  2. Karthick, R., Prabha, M., Sabapathy, S. R., Jiju, D., & Selvan, R. S. (2023, October). Inspired by social-spider behavior for microwave filter optimization, swarm optimization algorithm. In 2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS) (Vol. 1, pp. 1-4). IEEE.
  3. Vijayalakshmi, S., Sivaraman, P. R., Karthick, R., & Ali, A. N. (2020, September). Implementation of a new Bi-Directional Switch multilevel Inverter for the reduction of harmonics. In IOP Conference Series: Materials Science and Engineering (Vol. 937, No. 1, p. 012026). IOP Publishing.
  4. Kiruthiga, B., Karthick, R., Manju, I., & Kondreddi, K. (2024). Optimizing harmonic mitigation for smooth integration of renewable energy: A novel approach using atomic orbital search and feedback artificial tree control. Protection and Control of Modern Power Systems9(4), 160-176.
  5. Sulthan Alikhan, J., Miruna Joe Amali, S., & Karthick, R. (2024). Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security. Network: Computation in Neural Systems, 1-28.
  6. Sakthi, P., Bhavani, R., Arulselvam, D., Karthick, R., Selvakumar, S., & Sudhakar, M. (2022, September). Energy efficient cluster head selection and routing protocol for WSN. In AIP Conference Proceedings (Vol. 2518, No. 1). AIP Publishing.
  7. Aravindaguru, I., Arulselvam, D., Kanagavalli, N., Ramkumar, V., & Karthick, R. (2022, September). Space cloud in cubesat-Consigning expert system to space. In AIP Conference Proceedings (Vol. 2518, No. 1). AIP Publishing.
  8. Karthick, R., Prabaharan, A. M., & Selvaprasanth, P. (2019). A Dumb-Bell shaped damper with magnetic absorber using ferrofluids. International Journal of Recent Technology and Engineering (IJRTE)8.
  9. Selvan, R. S., Wahidabanu, R. S. D., Karthick, B., Sriram, M., & Karthick, R. (2020). Development of Secure Transport System Using VANET. TEM (H-Index)82.
  10. Karthick, R., & Sundararajan, M. (2018). Optimization of MIMO Channels Using an Adaptive LPC Method. International Journal of Pure and Applied Mathematics118(10), 131-135.
  11. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International44(3), 18261-18271.
  12. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
  13. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
  14. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
  15. Anuprathibha, T., Praveen, R. V. S., Jayanth, H., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.